Home » Best Books to Learn Tensorflow

Best Books to Learn Tensorflow

Spread the love
Best books to learn tensorflow
Best Books to Learn Tensorflow

Here is the list of Best Books to Learn TensorFlow for Beginners to Advanced. We have listed these Best Books to Learn TensorFlow based on the Topics, Reader’s Reviews etc. I think these Best TensorFlow Books will really be helpful for you to learn new TensorFlow skills with Machine Learning, Computer vision, and python.

9+ Best Books to Learn TensorFlow 2022 for beginners to Advanced

Here are the best Books to learn TensorFlow. Please go through all these books and enjoy reading.

Machine Learning Using TensorFlow Cookbook: Create powerful machine learning algorithms with TensorFlow

This cookbook covers the fundamentals of the TensorFlow library, including variables, matrices, and various data sources. You’ll discover real-world implementations of Keras and TensorFlow and learn how to use estimators to train linear models and boosted trees, both for classification and regression.

Explore the practical applications of a variety of deep learning architectures, such as recurrent neural networks and Transformers, and see how they can be used to solve computer vision and natural language processing (NLP) problems.

With the help of this book, you will be proficient in using TensorFlow, understand deep learning from the basics, and be able to implement machine learning algorithms in real-world scenarios.

What you will learn

  • Take TensorFlow into production
  • Implement and fine-tune Transformer models for various NLP tasks
  • Apply reinforcement learning algorithms using the TF-Agents framework
  • Understand linear regression techniques and use Estimators to train linear models
  • Execute neural networks and improve predictions on tabular data
  • Master convolutional neural networks and recurrent neural networks through practical recipes

Who this book is for

If you are a data scientist or a machine learning engineer, and you want to skip detailed theoretical explanations in favor of building production-ready machine learning models using TensorFlow, this book is for you.

Basic familiarity with Python, linear algebra, statistics, and machine learning is necessary to make the most out of this book.

View this Book on Amazon

Learning Deep Learning: Theory and Practice of Neural Networks, Computer Vision, Natural Language Processing, and Transformers Using TensorFlow

Deep learning (DL) is a key component of today’s exciting advances in machine learning and artificial intelligence. Learning Deep Learning is a complete guide to DL. Illuminating both the core concepts and the hands-on programming techniques needed to succeed, this book is ideal for developers, data scientists, analysts, and others–including those with no prior machine learning or statistics experience.

After introducing the essential building blocks of deep neural networks, such as artificial neurons and fully connected, convolutional, and recurrent layers, Magnus Ekman shows how to use them to build advanced architectures, including the Transformer. He describes how these concepts are used to build modern networks for computer vision and natural language processing (NLP), including Mask R-CNN, GPT, and BERT. And he explains how a natural language translator and a system generating natural language descriptions of images.

Throughout, Ekman provides concise, well-annotated code examples using TensorFlow with Keras. Corresponding PyTorch examples are provided online, and the book thereby covers the two dominating Python libraries for DL used in industry and academia. He concludes with an introduction to neural architecture search (NAS), exploring important ethical issues and providing resources for further learning.

  • Explore and master core concepts: perceptrons, gradient-based learning, sigmoid neurons, and back propagation
  • See how DL frameworks make it easier to develop more complicated and useful neural networks
  • Discover how convolutional neural networks (CNNs) revolutionize image classification and analysis
  • Apply recurrent neural networks (RNNs) and long short-term memory (LSTM) to text and other variable-length sequences
  • Master NLP with sequence-to-sequence networks and the Transformer architecture
  • Build applications for natural language translation and image captioning

View this Book on Amazon

TensorFlow 2 Pocket Reference: Building and Deploying Machine Learning Models

This easy-to-use reference for TensorFlow 2 design patterns in Python will help you make informed decisions for various use cases. Author KC Tung addresses common topics and tasks in enterprise data science and machine learning practices rather than focusing on TensorFlow itself.

When and why would you feed training data as using NumPy or a streaming dataset? How would you set up cross-validations in the training process? How do you leverage a pretrained model using transfer learning? How do you perform hyperparameter tuning? Pick up this pocket reference and reduce the time you spend searching through options for your TensorFlow use cases.

  • Understand best practices in TensorFlow model patterns and ML workflows
  • Use code snippets as templates in building TensorFlow models and workflows
  • Save development time by integrating prebuilt models in TensorFlow Hub
  • Make informed design choices about data ingestion, training paradigms, model saving, and inferencing
  • Address common scenarios such as model design style, data ingestion workflow, model training, and tuning

View this Book on Amazon

Generative AI with Python and TensorFlow 2: Create images, text, and music with VAEs, GANs, LSTMs, Transformer models

Machines are excelling at creative human skills such as painting, writing, and composing music. Could you be more creative than generative AI?

In this book, you’ll explore the evolution of generative models, from restricted Boltzmann machines and deep belief networks to VAEs and GANs. You’ll learn how to implement models yourself in TensorFlow and get to grips with the latest research on deep neural networks.

There’s been an explosion in potential use cases for generative models. You’ll look at Open AI’s news generator, deepfakes, and training deep learning agents to navigate a simulated environment.

Recreate the code that’s under the hood and uncover surprising links between text, image, and music generation.

What you will learn

  • Export the code from GitHub into Google Colab to see how everything works for yourself
  • Compose music using LSTM models, simple GANs, and MuseGAN
  • Create deepfakes using facial landmarks, autoencoders, and pix2pix GAN
  • Learn how attention and transformers have changed NLP
  • Build several text generation pipelines based on LSTMs, BERT, and GPT-2
  • Implement paired and unpaired style transfer with networks like StyleGAN
  • Discover emerging applications of generative AI like folding proteins and creating videos from images

Who this book is for

This is a book for Python programmers who are keen to create and have some fun using generative models. To make the most out of this book, you should have a basic familiarity with math and statistics for machine learning.

View this book on Amazon

Machine Learning with TensorFlow, Second Edition

Machine Learning with TensorFlow, Second Edition is a fully revised guide to building machine learning models using Python and TensorFlow. You’ll apply core ML concepts to real-world challenges, such as sentiment analysis, text classification, and image recognition. Hands-on examples illustrate neural network techniques for deep speech processing, facial identification, and auto-encoding with CIFAR-10.

What’s inside

  • Machine Learning with TensorFlow
  • Choosing the best ML approaches
  • Visualizing algorithms with TensorBoard
  • Sharing results with collaborators
  • Running models in Docker

View this Book on Amazon

TinyML: Machine Learning with TensorFlow Lite on Arduino and Ultra-Low-Power Microcontrollers

Deep learning networks are getting smaller. Much smaller. The Google Assistant team can detect words with a model just 14 kilobytes in size–small enough to run on a microcontroller. With this practical book you’ll enter the field of TinyML, where deep learning and embedded systems combine to make astounding things possible with tiny devices. 

Pete Warden and Daniel Situnayake explain how you can train models small enough to fit into any environment. Ideal for software and hardware developers who want to build embedded systems using Best machine learning Books, this guide walks you through creating a series of TinyML projects, step-by-step. No machine learning or microcontroller experience is necessary.

  • Build a speech recognizer, a camera that detects people, and a magic wand that responds to gestures
  • Work with Arduino and ultra-low-power microcontrollers
  • Learn the essentials of ML and how to train your own models
  • Train models to understand audio, image, and accelerometer data
  • Explore TensorFlow Lite for Microcontrollers, Google’s toolkit for TinyML
  • Debug applications and provide safeguards for privacy and security
  • Optimize latency, energy usage, and model and binary size

View this Book on Amazon

Advanced Natural Language Processing with TensorFlow 2: Build effective real-world NLP applications using NER, RNNs, seq2seq models, Transformers, and more

The book is focused on innovative applications in the field of NLP, language generation, and dialogue systems. It helps you apply the concepts of pre-processing text using techniques such as tokenization, parts of speech tagging, and lemmatization using popular libraries such as Stanford NLP and SpaCy. You will build Named Entity Recognition (NER) from scratch using Conditional Random Fields and Viterbi Decoding on top of RNNs.

The book covers key emerging areas such as generating text for use in sentence completion and text summarization, bridging images and text by generating captions for images, and managing dialogue aspects of chatbots. You will learn how to apply transfer learning and fine-tuning using TensorFlow 2.

Further, it covers practical techniques that can simplify the labelling of textual data. The book also has a working code that is adaptable to your use cases for each tech piece.

By the end of the book, you will have an advanced knowledge of the tools, techniques and deep learning architecture used to solve complex NLP problems.

What you will learn

  • Grasp important pre-steps in building NLP applications like POS tagging
  • Use transfer and weakly supervised learning using libraries like Snorkel
  • Do sentiment analysis using BERT
  • Apply encoder-decoder NN architectures and beam search for summarizing texts
  • Use Transformer models with attention to bring images and text together
  • Build apps that generate captions and answer questions about images using custom Transformers
  • Use advanced TensorFlow techniques like learning rate annealing, custom layers, and custom loss functions to build the latest DeepNLP models

Who this book is for

This is not an introductory book and assumes the reader is familiar with basics of NLP and has fundamental Python skills, as well as basic knowledge of machine learning and undergraduate-level calculus and linear algebra.

The readers who can benefit the most from this book include intermediate ML developers who are familiar with the basics of supervised learning and deep learning techniques and professionals who already use TensorFlow/Python for purposes such as Best data science Books, ML, research, analysis, etc.

View this book on Amazon

Deep Learning with TensorFlow 2 and Keras: Regression, ConvNets, GANs, RNNs, NLP, and more with TensorFlow 2 and the Keras API, 2nd Edition

Deep Learning with TensorFlow 2 and Keras, Second Edition teaches neural networks and deep learning techniques alongside TensorFlow (TF) and Keras. You’ll learn how to write deep learning applications in the most powerful, popular, and scalable machine learning stack available.

TensorFlow is the machine learning library of choice for professional applications, while Keras offers a simple and powerful Python API for accessing TensorFlow. TensorFlow 2 provides full Keras integration, making advanced machine learning easier and more convenient than ever before.

This book also introduces neural networks with TensorFlow, runs through the main applications (regression, ConvNets (CNNs), GANs, RNNs, NLP), covers two working example apps, and then dives into TF in production, TF mobile, and using TensorFlow with AutoML.

What you will learn

  • Build machine learning and deep learning systems with TensorFlow 2 and the Keras API
  • Use Regression analysis, the most popular approach to machine learning
  • Understand ConvNets (convolutional neural networks) and how they are essential for deep learning systems such as image classifiers
  • Use GANs (generative adversarial networks) to create new data that fits with existing patterns
  • Discover RNNs (recurrent neural networks) that can process sequences of input intelligently, using one part of a sequence to correctly interpret another
  • Apply deep learning to natural human language and interpret natural language texts to produce an appropriate response
  • Train your models on the cloud and put TF to work in real environments
  • Explore how Google tools can automate simple ML workflows without the need for complex modeling

Who this book is for

This book is for Python developers and data scientists who want to build machine learning and deep learning systems with TensorFlow. This book gives you the theory and practice required to use Keras, TensorFlow 2, and AutoML to build machine learning systems. Some knowledge of machine learning is expected.

View this Book on Amazon

Learning TensorFlow.js: Powerful Machine Learning in JavaScript

Given the demand for AI and the ubiquity of JavaScript, TensorFlow.js was inevitable. With this Google framework, seasoned AI veterans and web developers alike can help propel the future of AI-driven websites. In this guide, author Gant Laborde (Google Developer Expert in machine learning and the web) provides a hands-on end-to-end approach to TensorFlow.js fundamentals for a broad technical audience that includes data scientists, engineers, web developers, students, and researchers.

You’ll begin by working through some basic examples in TensorFlow.js before diving deeper into Best Books to Learn neural networks architectures, DataFrames, TensorFlow Hub, model conversion, transfer learning, and more. Once you finish this book, you’ll know how to build and deploy production-readydeep learning systems with TensorFlow.js.

  • Explore tensors, the most fundamental structure of machine learning
  • Convert data into tensors and back with a real-world example
  • Combine AI with the web using TensorFlow.js
  • Use resources to convert, train, and manage machine learning data
  • Build and train your own training models from scratch

View this book on Amazon

Deep Learning with JavaScript: Neural networks in TensorFlow.js

In Deep Learning with JavaScript, you’ll learn to use TensorFlow.js to build deep learning models that run directly in the browser. This fast-paced book, written by Google engineers, is practical, engaging, and easy to follow. Through diverse examples featuring text analysis, speech processing, image recognition, and self-learning game AI, you’ll master all the basics of deep learning and explore advanced concepts, like retraining existing models for transfer learning and image generation.

What’s inside

  • Image and language processing in the browser
  • Tuning ML models with client-side data
  • Text and image creation with generative deep learning
  • Source code samples to test and modify

View this book on Amazon

Hands-On Image Generation with TensorFlow: A practical guide to generating images and videos using deep learning

The emerging field of Generative Adversarial Networks (GANs) has made it possible to generate indistinguishable images from existing datasets. With this hands-on book, you’ll not only develop image generation skills but also gain a solid understanding of the underlying principles.

Starting with an introduction to the fundamentals of image generation using TensorFlow, this book covers Variational Autoencoders (VAEs) and GANs. You’ll discover how to build models for different applications as you get to grips with performing face swaps using deepfakes, neural style transfer, image-to-image translation, turning simple images into photorealistic images, and much more. You’ll also understand how and why to construct state-of-the-art deep neural networks using advanced techniques such as spectral normalization and self-attention layer before working with advanced models for face generation and editing. You’ll also be introduced to photo restoration, text-to-image synthesis, video retargeting, and neural rendering. Throughout the book, you’ll learn to implement models from scratch in TensorFlow 2.x, including PixelCNN, VAE, DCGAN, WGAN, pix2pix, CycleGAN, StyleGAN, GauGAN, and BigGAN.

By the end of this book, you’ll be well versed in TensorFlow and be able to implement image generative technologies confidently.

What you will learn

  • Train on face datasets and use them to explore latent spaces for editing new faces
  • Get to grips with swapping faces with deepfakes
  • Perform style transfer to convert a photo into a painting
  • Build and train pix2pix, CycleGAN, and BicycleGAN for image-to-image translation
  • Use iGAN to understand manifold interpolation and GauGAN to turn simple images into photorealistic images
  • Become well versed in attention generative models such as SAGAN and BigGAN
  • Generate high-resolution photos with Progressive GAN and StyleGAN

Who this book is for

The Hands-On Image Generation with TensorFlow book is for deep learning engineers, practitioners, and researchers who have basic knowledge of convolutional neural networks and want to learn various image generation techniques using TensorFlow 2.x. You’ll also find this book useful if you are an image processing professional or the Best computer vision Books engineer looking to explore state-of-the-art architectures to improve and enhance images and videos. Knowledge of Python and TensorFlow will help you to get the best out of this book.

View this Book on Amazon

.

The TensorFlow Workshop: A hands-on guide to building deep learning models from scratch using real-world datasets

Getting to grips with tensors, deep learning, and neural networks can be intimidating and confusing for anyone, no matter their experience level. The breadth of information out there, often written at a very high level and aimed at advanced practitioners, can make getting started even more challenging.

If this sounds familiar to you, The TensorFlow Workshop is here to help. Combining clear explanations, realistic examples, and plenty of hands-on practice, it’ll quickly get you up and running.

You’ll start off with the basics – learning how to load data into TensorFlow, perform tensor operations, and utilize common optimizers and activation functions. As you progress, you’ll experiment with different TensorFlow development tools, including TensorBoard, TensorFlow Hub, and Google Colab, before moving on to solve regression and classification problems with sequential models.

Building on this solid foundation, you’ll learn how to tune models and work with different types of neural network, getting hands-on with real-world deep learning applications such as text encoding, temperature forecasting, image augmentation, and audio processing.

By the end of this deep learning book, you’ll have the skills, knowledge, and confidence to tackle your own ambitious deep learning projects with TensorFlow.

What you will learn

  • Get to grips with TensorFlow’s mathematical operations
  • Pre-process a wide variety of tabular, sequential, and image data
  • Understand the purpose and usage of different deep learning layers
  • Perform hyperparameter-tuning to prevent overfitting of training data
  • Use pre-trained models to speed up the development of learning models
  • Generate new data based on existing patterns using generative models

Who this book is for

This TensorFlow book is for anyone who wants to develop their understanding of deep learning and get started building neural networks with TensorFlow. Basic knowledge of Python programming and its libraries, as well as a general understanding of the fundamentals of data science and machine learning, will help you grasp the topics covered in this book more easily.

View this Book on Amazon

Conclusion:

I think you have enjoyed reading this list of Best Books to learn TensorFlow 2022. If you think some of the Best Books to Learn TensorFlow, Please comment in the comment section with the Book name. So that we can update the list of best Books to learn TensorFlow.

1 thought on “Best Books to Learn Tensorflow”

  1. Pingback: 5+ Best Computer Vision Courses to know 2022 | Learn Computer Vision -

Leave a Reply

Your email address will not be published.